$$
\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{3} \text { AND } \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}
$$

References

Andrews, L. (1974). FLINUS. Brookhaven National Laboratory, Upton, NY 11973, USA.
Bhatt, M. V. \& Kamath, K. M. (1968). J. Chem. Soc. B, pp. 1036-1044.
Bowden, K. \& Taylor G. R. (1971). J. Chem. Soc. B, pp. 1390-1394.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee, USA.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). orffe. Report ORNL-TM-306. Oak Ridge National Laboratory, Tennessee, USA.
Delettre, J. (1969). C. R. Acad. Sci. Sér. C, 269, 103-104.
Glick, M. (1975). SYNCOR. Wayne State Univ., Detroit, MI 48202, USA. Personal communication.
Griffe, M., Durant, F. \& Pieret, A. F. (1972). Bull. Soc. Chim. Belg. 81, 319-332.
Hollander, F. (1975). ABSOR. Brookhaven National Laboratory, Upton, NY 11973, USA.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 72-98. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1970). ORTEPII. Report ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee, USA.

Kundu, M. L. \& Chakravorty, S. C. (1967). Indian J. Phys. 41, 547-549.
Lalancette, R. A., Cefola, M., Hamliton, W. C. \& La Placa, S. J. (1967). Inorg. Chem. 6, 2127-2134.

Lalancette, R. A., Slifer, P. B. \& Thompson, H. W. (1989). Acta Cryst. B45, 596-597.
Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Plaskuda, H. (1874). Chem. Ber. 7, 986-988.
Plascuda, H. \& Zincke, Th. (1873). Chem. Ber. 6, 906-910.
Sheldrick, W. S. \& Trowitsch, W. (1983). Z. Naturforsch. Teil B, 38, 220-225.
Shiono, R. (1971). GEOM. Univ. of Pittsburgh, PA 15260, USA.
Templeton, L. K. \& Templeton, D. H. (1973). Proc. Am. Crystallogr. Assoc. Meet. Abstr., Ser. 2, Vol. 1, p. 143.
Tyman, J. H. P. \& Najam, A. A. (1977) Spectrochim. Acta, 33A, 479-485.
Vanderhoff, P. A., Thompson, H. W. \& Lalancette, R. A. (1986). Acta Cryst. C42, 1766-1769.

Zalkin, A. (1962). FORDAP. Univ. of California, Berkeley, CA 94720, USA.

Acta Cryst. (1990). C46, 1686-1691

6 α - and 6β-Trifluoromethyl-Substituted Androstenedione

By Drake S. Eggleston* and Hsuan-Yin Lan-Hargest \dagger
Department of Physical and Structural Chemistry and Department of Medicinal Chemistry, Smith Kline \& French Laboratories, L-950, PO Box 1539, King of Prussia, PA 19406-0939, USA

(Received 15 July 1988; accepted 6 November 1989)

Abstract

. 6β-Trifluoromethyl-4-androstene-3,17dione (I), $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{O}_{2}, M_{r}=354 \cdot 42$, orthorhombic, $P 2_{1} 2_{1} 2_{1}, \quad a=8.123(3), \quad b=10 \cdot 348$ (3), $\quad c=$ $21 \cdot 725$ (11) $\AA, \quad V=1826 \cdot 1(15) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.289 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo K $\alpha)=0.71073 \AA, \quad \mu=$ $0.0964 \mathrm{~mm}^{-1}, F(000)=752, T=293 \mathrm{~K}, R=0.052$, $w R=0.061$ for 930 observations. 6α-Trifluoro-methyl-4-androstene-3,17-dione (II), $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{O}_{2}, M_{r}$ $=354 \cdot 42$, tetragonal, $P 4_{1} 2_{1} 2, a=10 \cdot 896$ (2), $c=$ 29.569 (6) $\AA, \quad V=3510.7(6) \AA^{3}, \quad Z=8, \quad D_{x}=$ $1.341 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{CuK} \mathrm{\alpha})=1.54184 \AA, \quad \mu=$ $0.8647 \mathrm{~mm}^{-1}, F(000)=1504, T=293 \mathrm{~K}, R=0.065$, $w R=0.093$ for 1576 observations. The novel 6β steroid (I) was prepared from a photochemical rearrangement of a dienoltriflate; its α epimer (II) was prepared from acid treatment of (I). The overall conformation of (I) is nearly identical to that of the parent molecule, androst-4-ene-3,17-dione, to which

[^0]0108-2701/90/091686-06\$03.00
the structures of both (I) and (II) are conveniently compared. The A-ring conformation of (I) may be described either as a $(1 \alpha-2 \beta)$ half-chair or as a 1α-sofa; A-ring asymmetry parameters are $\Delta C_{2}^{1,2}=$ $14 \cdot 2, \Delta C_{s}^{1}=12 \cdot 5$ with an average internal ring torsion angle of 26.9°. The D-ring conformation is a 14α-envelope; $\Delta C_{s}(14)=15 \cdot 6$. The A-ring bowing angle is $19 \cdot 2^{\circ}$. For (II) a disordered A ring with two half-occupancy positions for $\mathrm{C}(2)$ is found. The A-ring conformation thus may be described both as a 2α - and a 2β-sofa; A-ring asymmetry parameters are $\Delta C_{s}(2 \alpha)=6 \cdot 5, \Delta C_{s}(2 \beta)=2 \cdot 4$; average torsion angle within the ring $=24 \cdot 4(2 \alpha)$ or $24 \cdot 2^{\circ}(2 \beta)$. The B and C rings adopt normal chair conformations; the D ring is a 14α-envelope with $\Delta C_{s}(14)=9 \cdot 2$. The steroid bowing angle is 43.9° with inclusion of all A-ring atoms.

Introduction. In conjunction with an interest in the design of inhibitors for the enzyme steroid 5α reductase, the 6β-trifluoromethyl-substituted andro-
(C) 1990 International Union of Crystallography
stenedione (I) was prepared via the novel photochemical rearrangement of a steroidal dienoltriflate (Lan-Hargest, Elliett, Eggleston \& Metcalf, 1987). The thermodynamically more stable equatorially substituted 6α epimer (II) was obtained via acid treatment of (I). Beyond proving unambiguously the structures of these novel compounds, our interest focused on the effects which α or β substitution of this bulky group at position 6 might induce upon steroidal conformation, particularly features of the A ring. To this end, we present comparisons to some androst-4-ene-3-ones in the literature.

(I)

(II)

Experimental. For (I), weakly diffracting colorless tablet from ethyl acetate approximately 0.10×0.24 $\times 0.20 \mathrm{~mm}$ on edge, mounted with epoxy on a glass fiber. Cell constants from a least-squares analysis of 25 reflections [$30 \leq 2 \theta(\mathrm{Mo}) \leq 35^{\circ}$] measured on the diffractometer. Data collected on an Enraf-Nonius CAD-4 diffractometer equipped with graphite monochromator; variable speed $\omega-2 \theta$ scans. Systematic absences: $h 00,0 k 0,00 l$ for h, k, l odd, respectively; 2524 reflections for $2 \theta \leq 56^{\circ}, 0 \leq h \leq 10,0 \leq k \leq 13$, $0 \leq l \leq 28$; Lorentz-polarization correction, no systematic fluctuations in reflections $081, \overline{3}, 4,13,547$, monitored at the beginning, end and every 3 h during data collection (13 times): max. deviation in $\left|F_{o}\right| 2 \cdot 5$, 3.9 and 3.0%, respectively; mean values of $\left|F_{o}\right| 121 \cdot 0(15), 94 \cdot 0(19)$ and $97 \cdot 5(11)$, respectively; no absorption correction. Structure solution by direct methods using MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980). Anisotropic least-squares refinement (on F) of non-H positions; weights were $4 F_{o}^{2} / s^{2}(I)$ with $s(I)=$ $\left[\sigma(I)^{2}+\left(0.06 F_{o}\right)^{2}\right]^{1 / 2}$ and $\sigma(I)$ from counting statistics. H -atom positions were assigned from geometrical considerations assuming a $\mathrm{C}-\mathrm{H}$ bond length of $1.0 \AA$. Isotropic thermal parameters $\left(1.3 \times U_{c}\right)$ were also assigned and held fixed in the final stages of refinement. The final refinement cycles converged with max. $\Delta / \sigma=0.01 ; R=0.052, w R=0.061, S=$ $1 \cdot 60,930$ observations with $I \geq 3 \cdot 0 \sigma(I), 226$ variables. A final difference map showed maximum postive and negative excursions of 0.196 and $0 \cdot 312 \mathrm{e} \AA^{-3}$, respectively. For (II), colorless tablet from ethyl acetate, approximately $0.80 \times 0.65 \times$ 0.65 mm on edge, mounted with epoxy on a glass
fiber. Cell constants from least-squares analysis of 25 reflections [$60 \leq 2 \theta(\mathrm{Cu}) \leq 70^{\circ}$] measured on the diffractometer. Data were collected as for (I) using a $\theta-2 \theta$ scan. Systematic absences: $h 00, h$ odd; $00 l, l \neq$ $4 n$. Measured intensities: $3358,2 \theta \leq 130^{\circ}, 0 \leq h \leq 12$, $0 \leq k \leq 12,0 \leq l \leq 34$; Lorentz-polarization correction; decay correction ($2 \cdot 3 \%$ intensity loss); absorption correction based on ψ scans (transmission coefficients: min. $=72 \cdot 42, \quad \max .=99 \cdot 90 \%$). Sym-metry-equivalent reflections were averaged, $R_{\mathrm{int}}=$ 0.043 leaving 1801 unique observations. Structure solution by direct methods using MULTAN80. Anisotropic least-squares refinement (on F) of non- H positions; hydrogen positions were calculated from theoretical considerations assuming a $\mathrm{C}-\mathrm{H}$ bond length of $1 \cdot 0 \AA$. H atoms were assigned to atom $\mathrm{C}(1)$ [two half-occupancy positions based on atoms $\mathrm{C}(2 A)$ and $\mathrm{C}(2 B)$ and at half-occupancy for $\mathrm{C}(2 A)$ and $\mathrm{C}(2 B)$]. All hydrogen positions and isotropic thermal parameters ($1.3 \times U_{c}$) were held fixed in the final cycles. Weights as above; convergence indicated by max. $\Delta / \sigma=0.01, R=0.065, w R=0.093, S=2.420$, 1576 observations with $I \geq 3 \sigma(I), 236$ variables. An extinction coefficient of the type defined by Zachariasen (1963) refined to $7.35(2) \times 10^{-6}$. A final difference Fourier map showed maximum positive and negative excursions of 0.254 and $0.292 \mathrm{e} \AA^{-3}$. All programs from the locally modified EnrafNonius (1983) SDP; neutral-atom scattering factors from International Tables for X-ray Crystallography (1974), for H atoms from Stewart, Davidson \& Simpson (1965).

Discussion. Figs. 1 and 2 display the structures of (I) and (II), respectively, from a common viewpoint. Positional parameters are listed in Tables 1 and 2* while Table 3 presents the principal metrical values. The structure of (I) as found in the solid state displays an A-ring conformation intermediate between a ($1 \alpha-2 \beta$) half-chair and a 1α-sofa. Atoms $C(2), C(3), C(4), C(5)$ and $C(10)$ define a plane from which the largest deviation of any atom is 0.058 (6) \AA. Atom C(1) is disposed 0.631 (7) \AA below this plane. Alternatively, the distorted half-chair may be described by the plane defined with atoms $\mathrm{C}(3)$, $C(4), C(5)$ and $C(10)$ from which no atom deviates by more than 0.030 (6) \AA. Atoms $C(1)$ and $C(2)$ are disposed 0.523 (7) and $0.168(7) \AA$, respectively, toward the α and β faces. The A-ring asymmetry parameters are $\Delta C_{2}(1,2)=14 \cdot 2, \Delta C_{s}(1)=12 \cdot 5, \Delta C_{s}(2)$

[^1]$=32.5$. The average torsion angle within the ring is $26 \cdot 9^{\circ}$. For comparison purposes it is useful to note that the parent androst-4-ene-3,17-dione adopts a 1α-sofa A-ring conformation with $\Delta C_{s}(1)=9 \cdot 0$ and $\Delta C_{2}(1,2)=17 \cdot 6$ (Busetta, Comberton, Courseille \& Hospital, 1972). The $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$ torsion angle of $-7.4(9)^{\circ}$ in (I) shows the formally double bond to be torqued slightly from planarity; however, the distortion is only 1° larger than was observed in the androstenedione structure. The torsion angle about the $\mathrm{C}(3)-\mathrm{C}(4)$ bond, which also involves $s p^{2}$ centers, is $-1 \cdot 6(8)^{\circ}$; this angle was also planar in the androstenedione structure.

Substitution of the trifluoromethyl group β at $\mathrm{C}(6)$ induces only slight perturbations in standard B-ring geometry and conformation. The $\mathrm{C}(10)$ -$\mathrm{C}(5)-\mathrm{C}(6)$ angle of $120 \cdot 8(5)^{\circ}$ is comparable to the $121 \cdot 1^{\circ}$ value reported for the 6β-bromo analog (Strong, Hazel, Duax \& Osawa, 1976) but wider than the $116 \cdot 7^{\circ}$ value reported for androstenedione. The B ring adopts a flattened-chair conformation with $C(5)$ and $C(8)$ situated 0.427 (6) and $0.684(6) \AA$, respectively, below and above the plane defined by the other four ring atoms, from which none deviates by more than 0.051 (6) \AA. The endocyclic bond angle at

Fig. 1. ORTEP (Johnson, 1979) drawing of (I); non-H atoms are drawn as primary ellipses at the 50% probability level.

Fig. 2. ORTEP (Johson, 1979) drawing of (II); non-H atoms are drawn as primary ellipses at the 50% probability level. Position 2 of the A ring is disordered $50 / 50$ between positions labeled $\mathrm{C} 2 A$ and $C 2 B$.

Table 1. Positional parameters with e.s.d.'s for (I)

$B_{\text {eq }}=(4 / 3) \sum_{i} \sum_{j} \beta_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {cq }}\left(\AA^{2}\right)$
F(1)	0.4514 (5)	0.5815 (3)	$0 \cdot 5172$ (1)	$6 \cdot 34$ (8)
F(2)	$0 \cdot 5219$ (5)	0.3946 (3)	0.5454 (2)	7.7 (1)
F(3)	$0 \cdot 2718$ (5)	0.4504 (4)	0.5511 (2)	8.2 (1)
$\mathrm{O}(3)$	0.8899 (5)	0.3115 (4)	0.7227 (2)	7.5 (1)
$\mathrm{O}(17)$	0.3608 (5)	$1 \cdot 2329$ (3)	0.6745 (2)	5.49 (9)
C(1)	0.8788 (6)	0.6492 (5)	$0 \cdot 6861$ (3)	$4 \cdot 5$ (1)
C(2)	0.9672 (6)	$0 \cdot 5193$ (5)	0.6835 (3)	4.7 (1)
C(3)	$0 \cdot 8519$ (6)	0.4115 (5)	0.6964 (2)	4.5 (1)
C(4)	$0 \cdot 6804$ (6)	0.4296 (4)	0.6754 (2)	$3 \cdot 9$ (1)
C(5)	0.6254 (6)	0.5377 (4)	0.6474 (2)	$3 \cdot 2$ (1)
C(6)	0.4464 (6)	0.5373 (4)	0.6266 (2)	$3 \cdot 5$ (1)
C(7)	0.3581 (6)	0.6659 (4)	0.6363 (2)	$3 \cdot 5$ (1)
C(8)	0.4625 (6)	0.7844 (4)	0.6224 (2)	$3 \cdot 18$ (9)
C(9)	0.6250 (5)	0.7780 (4)	0.6591 (2)	$3 \cdot 16$ (9)
C(10)	0.7297 (6)	0.6579 (4)	0.6412 (2)	3.3 (1)
C(11)	0.7234 (6)	0.9056 (5)	0.6570 (3)	4.7 (1)
C(12)	0.6197 (6)	1.0239 (5)	0.6730 (3)	$5 \cdot 2$ (1)
C(13)	0.4678 (6)	1.0308 (4)	0.6328 (2)	$3 \cdot 8$ (1)
C(14)	0.3707 (5)	0.9061 (4)	0.6413 (2)	$3 \cdot 2$ (1)
C(15)	0.2023 (7)	0.9370 (4)	0.6118 (3)	4.6 (1)
C(16)	0.1719 (6)	1.0785 (5)	0.6297 (3)	4.6 (1)
C(17)	0.3387 (6)	1.1300 (5)	0.6476 (2)	4.0 (1)
C(18)	0.5138 (7)	1.0586 (5)	0.5654 (3)	$5 \cdot 5$ (1)
C(19)	0.7971 (7)	0.6685 (5)	0.5747 (2)	4.3 (1)
C(20)	0.4266 (7)	0.4908 (5)	$0 \cdot 5604$ (2)	$4 \cdot 8$ (1)

Table 2. Positional parameters with e.s.d.'s for (II)

$B_{\text {eq }}=(4 / 3) \sum_{i} \sum_{j} \boldsymbol{\beta}_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{\left({ }^{2}\right)}\right.$
F(1)	0.0520 (2)	0.9657 (2)	0.45333 (8)	$4 \cdot 85$ (5)
F(2)	$0 \cdot 1911$ (2)	0.9066 (2)	0.49911 (9)	$5 \cdot 19$ (5)
F(3)	0.2373 (2)	0.9496 (2)	0.43059 (9)	$6 \cdot 13$ (6)
O(3)	-0.1706 (3)	0.7082 (3)	0.5611 (1)	$6 \cdot 62$ (9)
$\mathrm{O}(17)$	0.4876 (3)	$0 \cdot 1990$ (3)	0.4305 (1)	7.38 (8)
C(1)	-0.0983 (4)	0.5061 (5)	0.4729 (2)	$8 \cdot 9$ (1)
$\mathrm{C}(2 B)$	-0.1891 (8)	0.5731 (8)	0.4986 (4)	$5 \cdot 6$ (2)
$\mathrm{C}(2 A)$	-0.1109 (8)	0.5322 (8)	0.5148 (3)	$5 \cdot 7$ (2)
C(3)	-0.1211 (5)	0.6702 (4)	0.5267 (1)	$6 \cdot 2$ (1)
C(4)	-0.0272 (3)	0.7388 (3)	0.5023 (1)	3.36 (7)
C(5)	0.0287 (3)	0.6967 (3)	$0 \cdot 4660$ (1)	3.06 (7)
C(6)	$0 \cdot 1325$ (3)	0.7644 (3)	$0 \cdot 4415$ (1)	$3 \cdot 32$ (7)
C(7)	0.2501 (3)	0.6898 (4)	0.4456 (1)	$3 \cdot 27$ (7)
C(8)	0.2327 (3)	0.5618 (3)	$0 \cdot 4252$ (1)	2.93 (7)
C(9)	$0 \cdot 1230$ (3)	0.4953 (3)	0.4470 (1)	3.19 (7)
C(10)	0.0017 (4)	0.5705 (4)	0.4456 (1)	$3 \cdot 84$ (8)
C(11)	$0 \cdot 1097$ (4)	0.3639 (4)	0.4271 (1)	4.71 (9)
C(12)	0.2264 (5)	0.2873 (4)	0.4327 (1)	$5 \cdot 0$ (1)
C(13)	0.3351 (4)	0.3541 (3)	0.4122 (1)	3.92 (8)
C(14)	0.3475 (3)	0.4829 (4)	0.4325 (1)	$3 \cdot 66$ (8)
C(15)	0.4738 (4)	0.5289 (4)	$0 \cdot 4162$ (2)	$4 \cdot 8$ (1)
$\mathrm{C}(16)$	0.5524 (4)	0.4107 (5)	0.4216 (2)	$6 \cdot 2$ (1)
C(17)	0.4605 (5)	0.3046 (4)	0.4218 (1)	$5 \cdot 3$ (1)
C(18)	0.3253 (4)	0.3551 (4)	$0 \cdot 3604$ (1)	4.51 (9)
C(19)	-0.0466 (4)	0.5851 (4)	$0 \cdot 3962$ (2)	5.9 (1)
C(20)	0.1524 (3)	0.8960 (3)	$0 \cdot 4563$ (1)	$3 \cdot 84$ (8)

$\mathrm{C}(6)$ is $113.9(5)^{\circ}$, identical to values of 113.7° reported for both androstenedione and the 6β-bromo analog.

The C ring adopts a chair conformation while the D-ring conformation is a 14α-envelope. Atom $\mathrm{C}(14)$ is disposed 0.618 (6) \AA below the plane defined by the other four ring atoms, from which no atom deviates by more than 0.042 (7) \AA. The asymmetry parameter, $\Delta C_{s}(14)=15 \cdot 6$. The flattened 14α -

Table 3. Principal bond distances (\AA) and angles $\left({ }^{\circ}\right)$

	(I)	(II)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.526 (8)	
$\mathrm{C}(2)-\mathrm{C}(3)$	1.483 (8)	*
$\mathrm{C}(3)-\mathrm{C}(4)$	1.477 (9)	1.457 (4)
$\mathrm{C}(3)-\mathrm{O}(3)$	1.222 (7)	1.224 (4)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.350 (8)	1.318 (4)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.523 (8)	1.532 (4)
$\mathrm{C}(5)-\mathrm{C}(10)$	1.510 (8)	1.530 (4)
$\mathrm{C}(10)-\mathrm{C}(1)$	1.558 (9)	1.527 (5)
$\mathrm{C}(10)-\mathrm{C}(9)$	1.555 (8)	1.556 (4)
$\mathrm{C}(10)-\mathrm{C}(19)$	1.548 (8)	1.560 (4)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.527 (8)	1.523 (4)
$\mathrm{C}(6)-\mathrm{C}(20)$	1.524 (8)	1.515 (4)
$\mathrm{C}(20)-\mathrm{F}(1)$	1.343 (7)	1.335 (3)
$\mathrm{C}(20)-\mathrm{F}(2)$	1.303 (8)	1.339 (4)
$\mathrm{C}(20)-\mathrm{F}(3)$	1.340 (8)	1.332 (3)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.521 (7)	1.532 (4)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.543 (8)	1.540 (4)
$\mathrm{C}(8)-\mathrm{C}(14)$	1.520 (8)	1.533 (4)
$\mathrm{C}(9)-\mathrm{C}(11)$	1.543 (9)	1.554 (4)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.527 (9)	1.531 (5)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.514 (9)	1.516 (5)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.524 (8)	1.532 (4)
$\mathrm{C}(13)-\mathrm{C}(17)$	1.502 (8)	1.496 (5)
$\mathrm{C}(13)-\mathrm{C}(18)$	1.540 (8)	1.535 (3)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.544 (9)	1.542 (5)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.536 (8)	1.555 (5)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.507 (9)	1.529 (6)
$\mathrm{C}(17)-\mathrm{O}(17)$	$1 \cdot 228$ (6)	1.217 (4)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$	113.2 (5)	\dagger
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	111.0 (5)	\dagger
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(3)$	124.4 (6)	\dagger
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	116.3 (6)	+
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	119.4 (6)	$123 \cdot 1$ (3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	123.8 (6)	$123 \cdot 3$ (3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$116 \cdot 6$ (6)	124.0 (3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	122.5 (5)	123.0 (3)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	$120 \cdot 8$ (5)	112.9 (2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	113.9 (5)	$109 \cdot 1$ (2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(20)$	112.4 (6)	$115 \cdot 1$ (2)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(20)$	$110 \cdot 9$ (5)	111.2 (2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	114.4 (5)	$110 \cdot 5$ (2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	109.9 (5)	111.1 (2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	111.9 (5)	113.6 (2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(11)$	113.0 (5)	110.4 (2)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)$	111.7 (5)	111.4 (3)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(1)$	109.4 (5)	110.0 (3)
$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{C}(12)$	$113 \cdot 2$ (5)	112.5 (3)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$110 \cdot 8$ (5)	$110 \cdot 1$ (3)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	108.2 (5)	110.6 (2)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(17)$	118.5 (5)	117.7 (3)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)$	$111 \cdot 1$ (5)	110.4 (3)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$103 \cdot 5$ (5)	104.7 (2)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$103 \cdot 6$ (5)	$100 \cdot 9$ (3)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$104 \cdot 9$ (5)	$105 \cdot 4$ (3)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(13)$	$109 \cdot 3$ (5)	109.0 (3)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{O}(17)$	$124 \cdot 1$ (6)	123.8 (4)
$\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{O}(17)$	$126 \cdot 3$ (6)	127.1 (4)

*Position $\mathrm{C}(2)$ is disordered, occupying two sites. Calculated bond distances are $\mathrm{C}(1)-\mathrm{C}(2 A)=1.280(9), \quad \mathrm{C}(1)-\mathrm{C}(2 B)=$ $1.45(1), \mathrm{C}(2 A)-\mathrm{C}(3)=1.548(9), \mathrm{C}(2 B)-\mathrm{C}(3)=1.536$ (8) \AA.
\dagger Bond angles involving disordered sites are $\mathrm{C}(1)-\mathrm{C}(2 A)-\mathrm{C}(3)$
$=116.3$ (7), $\mathrm{C}(1)-\mathrm{C}(2 B)-\mathrm{C}(3)=107.6(6), \mathrm{C}(1)-\mathrm{C}(1)-\mathrm{C}(2 A)$ $=119 \cdot 1(5), \mathrm{C}(1)-\mathrm{C}(1)-\mathrm{C}(2 B)=122 \cdot 3(4), \quad \mathrm{C}(2 A)-\mathrm{C}(3)-\mathrm{O}(3)$ $=123 \cdot 2(4), \mathrm{C}(2 B)-\mathrm{C}(3)-\mathrm{O}(3)=118 \cdot 0(4), \mathrm{C}(2 A)-\mathrm{C}(3)-\mathrm{C}(4)$ $=109.6(4), \mathrm{C}(2 B)-\mathrm{C}(3)-\mathrm{C}(4)=115 \cdot 2(4)^{\circ}$.
envelope was observed in both the androstenedione and 6β-bromoandrostenedione structures.

The A-ring bowing angle is $19 \cdot 2^{\circ}$. The intramolecular $\mathrm{O}(3) \cdots \mathrm{O}(17)$ separation is $10 \cdot 511(6) \AA$.

Transannular $\mathrm{C}(19) \cdots$ flourine contact distances all are greater than $3 \cdot 2 \AA$.

The structure of (II) displays a disordered A ring with atom $\mathrm{C}(2)$ found in two equal-occupancy positions, labeled $\mathrm{C}(2 A)$ and $\mathrm{C}(2 B)$ in Fig. 2. These positions define, respectively, either a 2α - or 2β-sofa conformation for the A ring. Atoms $\mathrm{C}(1), \mathrm{C}(3), \mathrm{C}(4)$, $C(5)$ and $C(10)$ describe a plane from which no atom deviates. Atom $C(2 A)$ is disposed 0.499 (9) \AA above this plane while atom $C(2 B)$ sits 0.562 (9) \AA below the plane. The A-ring asymmetry parameters are $\Delta C_{s}(2 A)=6.5, \Delta C_{s}(2 B)=2.4$. The average torsion angle within the ring is $24 \cdot 4^{\circ}$ using angles defined by $\mathrm{C}(2 A)$ and $24 \cdot 2^{\circ}$ using $\mathrm{C}(2 B)$. A similar disorder was observed by Sutton \& Byrn (1987) in the tetragonal form of 9α-fluorocortisol; however, observation of the 2α-sofa conformation appears to be unique in 4 -ene-3-ones. As a consequence of this disorder, metrical values involving $\mathrm{C}(2)$ positions are inaccurate, the model having refined to a point where $\mathrm{C}(2)$ positions are closer than expected to $\mathrm{C}(1)$ and further from $\mathrm{C}(3)$. The $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$ torsion angle of $-0.7(6)^{\circ}$ shows planarity at the double bond, in contrast to the β-trifluoromethyl, α - and β-bromo-androstenediones as well as to the parent molecule itself. About the other A-ring $s p^{2}$ centers the torsion angle is $20.1(4)^{\circ}$ using $\mathrm{C}(2 A)$ and $-23.9(4)^{\circ}$ using atom $C(2 B)$.
In contrast both to (I) and to other 6β-substituted androstenediones, the $\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(6)$ angle is only 112.9 (2) ${ }^{\circ}$ in (II). This value is consistent with the $110 \cdot 9^{\circ}$ angle reported for the 6α-bromo analog (Hazel, Strong, Duax \& Osawa, 1977). In conjunction, the $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ angle of $124 \cdot 0(3)^{\circ}$ in (II) has widened by 4° over that reported for androstenedione but has not reached the $125 \cdot 9^{\circ}$ value reported for the 6α-bromo analog. The trifluoromethyl group is virtually coplanar with the A-ring double bond; the $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(20)$ torsion angle is $-11 \cdot 2(5)^{\circ}$.

The B ring adopts a chair conformation with $\mathrm{C}(5)$ and $C(8)$ situated 0.691 (3) and 0.655 (3) \AA, respectively, below and above the plane defined by the other four ring atoms. The C ring also adopts a characteristic chair conformation. The D-ring conformation approximates a 14α-envelope with $\mathrm{C}(14)$ disposed 0.651 (3) \AA below the plane defined by the other four ring atoms, from which no atom deviates by more than 0.032 (4) \AA. The asymmetry parameter $\Delta C_{s}(14)=9 \cdot 2$. The A-ring bowing angle is 43.9° with inclusion of all A-ring atoms in the calculation. The angle becomes 45.0° when both $\mathrm{C}(2)$ positions are omitted from the calculation of the least-squares plane through the A ring and becomes 40.9 or 48.8° when positions $\mathrm{C}(2 A)$ or $\mathrm{C}(2 B)$ are omitted, respectively. These bowing angles are near the upper limit of values observed in 4-ene-3-one structures; such
high values are consistent with other 4 -ene-3-one structures in which the 'inverted' A ring is observed (Sutton \& Byrn, 1987; Dupont, Dideberg \& Campsteyn, 1972; Precigoux, Busetta, Courseille \& Hospital, 1975; Duax, Cody, Griffin, Hazel \& Weeks, 1978). The intramolecular $\mathrm{O}(3) \cdots \mathrm{O}(17)$ separation is 9.855 (5) \AA.

Figs. $3(a-c)$ show overlays of (I) and both conformers of (II) with the solid-state structures of the corresponding 6 -bromo analog as well as with androstenedione. The molecules were fitted to one another using the SYBYL (Tripos Associates Inc., 1987) molecular-modeling software package. For the fits shown, r.m.s. deviations were 0.0120 for all three structures in Fig. 3(a), 0.0322 in Fig. 3(b) and 0.0329 in Fig. 3(c). The preponderance of the structural results, as illustrated in these figures, indicates little perturbation of the 4 -ene-3-one skeleton by the 6 -trifluoromethyl substitution with the exception of A-ring conformation. In regard to the latter, 6β-trifluoromethyl substitution leads to a structure quite similar to both the unsubstituted parent and to another analog with a large β-oriented substituent at $\mathrm{C}(6)$. In contrast, 6α substitution of the trifluoromethyl group results in large A-ring conformational differences as compared to both the unsubstituted parent and to the 6α-bromo analog. Such differences are not induced by the large but electronically diffuse bromo substituent nor are they induced by the 6α-fluoro substituent in a related series of structures (Eggleston, Lan-Hargest \& Elliott, 1990).

Fig. 3. Overlays of androstenedione (solid), and in (a) 6β-bromoandrostenedione (dash), 6β-trifluoromethylandrostenedione (I) (dots); (b) 6α-trifluoromethyl (II A) (dots) and 6α-bromo (dash); (c) 6α-trifluoromethyl (II B) (dots) and 6α-bromo (dash).

Table 4. Intermolecular contacts not involving H atoms for (I) and (II)
Distances are $<3.6 \AA$. For (I): $1, x, y, z ; 3, \frac{1}{2}+x, \frac{1}{2}-y,-z ; 4$, $-x, \frac{1}{2}+y, \frac{1}{2}-z$. For (II): $3, \frac{1}{2}-y, \frac{1}{2}+x, \frac{1}{4}+z ; 5, y, x,-z ; 8, \frac{1}{2}+x$, $\frac{1}{2}-y, \frac{3}{4}-z$.

	Distance (\AA)	Symmetry operator
(1)		
$\mathrm{F}(1) \cdots \mathrm{C}(15)$	$3 \cdot 471$ (7)	3/011
$\mathrm{F}(1) \cdots \mathrm{C}(19)$	$3 \cdot 500$ (7)	3/-1,1,1
$\mathrm{F}(2) \cdots \mathrm{O}(17)$	$3 \cdot 487$ (6)	1/0, -1,0
$\mathrm{F}(2) \cdots \mathrm{C}(18)$	3.504 (7)	1/0,-1,0
$\mathrm{F}(3) \cdots \mathrm{C}(18)$	$3 \cdot 287$ (7)	3/-111
$\mathrm{F}(3) \cdots \mathrm{O}(17)$	3.532 (6)	1/0, - 1,0
$\mathrm{O}(3) \cdots \mathrm{C}(1)$	$3 \cdot 205$ (7)	4/2,-1,1
$\mathrm{O}(17) \cdots \mathrm{C}(4)$	$3 \cdot 259$ (6)	1/010
$\mathrm{O}(17) \cdots \mathrm{C}(6)$	$3 \cdot 328$ (6)	1/010
(II)		
$\mathrm{F}(1) \cdots \mathrm{F}(1)$	3.064 (4)	5/-111
$\mathrm{F}(1) \cdots \mathrm{F}(2)$	3.244 (4)	5/-111
$F(2) \cdots$ C(1)	3.531 (6)	5/011
$\mathrm{F}(2) \cdots \mathrm{C}(18)$	3.445 (3)	3/000
$\mathrm{F}(3) \cdots \mathrm{C}(19)$	$3 \cdot 293$ (4)	8/010
$\mathrm{O}(3) \cdots \mathrm{C}(2 B)$	$3 \cdot 488$ (9)	5/-111
$\mathrm{O}(3) \cdots \mathrm{C}(4)$	3-578 (5)	5/-111
$\mathrm{O}(3) \cdots \mathrm{C}(8)$	3.586 (5)	3/000
$\mathrm{O}(17) \cdots \mathrm{C}(11)$	3.518 (4)	$8 / 000$
$\mathrm{C}(3) \cdots \mathrm{C}(3)$	$3 \cdot 580$ (8)	5/-111

Fig. 4. Stereoview of the unit-cell packing in (I). The b axis is horizontal and the c axis vertical.

Fig. 5. Stereoview of the unit-cell packing in (II). The a axis is horizontal and the c axis vertical.

Intermolecular contacts less than $3.6 \AA$ in length are presented for both structures in Table 4; Figs. 4 and 5 display stereo packing diagrams. While both molecules are precluded by their constitution from showing typical hydrogen-bonding interactions it is interesting to note the proximity of $\mathrm{O}(17)$ to both $\mathrm{C}(4)$ and $\mathrm{C}(6)$ in (I) for molecules translated along the b axis. Indeed, the $\mathrm{H}(5) \cdots \mathrm{O}(17)$ and $\mathrm{H}(6) \cdots \mathrm{O}(17)$ distances of 2.28 (4) and 2.45 (3) \AA, respectively, and $\mathrm{C}(4)-\mathrm{H}(5) \cdots \mathrm{O}(17)$ and $\mathrm{C}(6)-\mathrm{H}(6) \cdots \mathrm{O}(17)$ angles of 160 (2) and $144(2)^{\circ}$, respectively, may indicate a preferred packing arrangement based on $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. In the structure of (II) no such close contacts are evident. Instead, closest contacts are of the fluorine/fluorine and fluorine/carbon type.

References

Busetta, B., Comberton, G., Courseille, C. \& Hospital, M. (1972). Cryst. Struct. Commun. 1, 129-133.

Duax, W. L., Cody, V., Griffin, J. F., Hazel, J. \& Weeks, C. M. (1978). J. Steriod Biochem. 9, 901-910.

Dupont, P. L., Dideberg, O. \& Campsteyn, H. (1972). Acta Cryst. B28, 3023-3032.

Eggleston, D. S., lan-Hargest, H. Y. \& Elliott, J. D. (1990). Acta Cryst. Submitted.
Enraf-Nonius (1983). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Hazel, J. P., Strong, P. D., Duax, W. L. \& Osawa, Y. (1977). Cryst. Struct. Commun. 6, 507-510.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
lan-Hargest, H. Y., Elliott, J. D., Eggleston, D. S. \& MetCalf, B. W. (1987). Tetrahedron Lett. 28, 6557-6560.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerco, J.-P. \& Woolfson, M. M. (1980). multan80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Precigoux, P. G., Busetta, B., Courseille, C. \& Hospital, M. (1975). Acta Cryst. B31, 1527-1532.

Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Strong, P. D., Hazel, J. P., Duax, W. L. \& Osawa, Y. (1976). Cryst. Struct. Commun. 5, 275-278.
Sutton, P. A. \& Byrn, S. R. (1987). J. Pharm. Sci. 76, 253-258.
Tripos Associates Inc. (1987). SYBYL. A System of Computer Programs for Molecular Modeling. Version 3.4. Tripos Associates Inc., Clayton, Missouri, USA.
Zachariasen, W. M. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1990). C46, 1691-1693

Structure of 2-[1-(2-Thienyl)ethylideneamino]phenol

By W. Sawka-Dobrowolska, Z. Siatecki and J. M. Sobczak
Institute of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw, Poland

(Received 22 May 1989; accepted 17 October 1989)

Abstract

C}_{12} \mathrm{H}_{11}\) NOS, $M_{r}=217 \cdot 7$, orthorhombic, Pnca, $a=15 \cdot 582$ (4), $b=16 \cdot 162$ (4), $c=8.729$ (2) \AA, $V=2198.3 \AA^{3}, \quad Z=8, \quad D_{m}=1 \cdot 310(1), \quad D_{x}=$ $1.31 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71069 \AA, \quad \mu=$ $0.26 \mathrm{~mm}^{-1}, F(000)=912, T=292 \mathrm{~K}, R=0.044$ for 1367 observed reflexions. The thiophene and phenyl rings are planar and make a dihedral angle of $82 \cdot 5(3)^{\circ}$. The crystal structure is stabilized by an intermolecular H bond $[2.835(3) \AA$] from the phenolic OH to the imino N atom. A short intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ contact of $2 \cdot 866(3) \AA$ is also observed.

Introduction. Schiff bases are interesting ligands that give stable metal complexes. In continuing our studies of molybdenum(VI) complexes with Schiffbase ligands (Głowiak, Rucińska, Sobczak \& Ziółkowski, 1987; Sobczak, Głowiak \& Ziółkowski, 1990) we obtained a new crystalline monobasic 0108-2701/90/091691-03\$03.00
bidentate Schiff base from 2-thienyl ketone and o-aminophenol.

In this paper we report the synthesis and X-ray structure of 2-[1-(2-thienyl)ethylideneamino]phenol (I).

Experimental. A mixture of 0.1 mol 2 -thienyl ketone, $0.1 \mathrm{~mol} o$-aminophenol and 1 ml of formic acid as a catalyst in 150 ml of toluene was boiled using a Dean-Stark trap. After cooling, the title compound © 1990 International Union of Crystallography

[^0]: * Department of Physical and Structural Chemistry.
 \dagger Department of Medicinal Chemistry.

[^1]: * Lists of structure factors, anisotropic thermal parameters, bond lengths and angles involving H atoms and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52724 (36 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

